ওয়েবসাইট: www.bb.org.bd

সাসটেইনবল ফাইন্যান্স ডিপার্টমেন্ট বাংলাদেশ ব্যাংক প্রধান কার্যালয় ঢাকা

এসএফডি সার্কুলার নং: ০৪

ব্যবস্থাপনা পরিচালক/প্রধান নির্বাহী বাংলাদেশে কার্যরত সকল তফসিলী ব্যাংক ও আর্থিক প্রতিষ্ঠান

প্রিয় মহোদয়,

ব্যাংক ও আর্থিক প্রতিষ্ঠানগুলোর পরিবেশবান্ধব অর্থায়নের জন্য উপযুক্ত পণ্য/উদ্যোগ তালিকা

২০১১ সালে ব্যাংকগুলো ও ২০১৩ সালে আর্থিক প্রতিষ্ঠানগুলোর জন্য জারিকৃত পরিবেশবান্ধব ব্যাংকিং নীতিমালায় (বিআরপিডি সার্কুলার নং:০২ তারিখ-ফেব্রুয়ারি ২৭, ২০১১; জিবিসিএসআরডি সার্কুলার নং:০৪ তারিখ-আগস্ট ১১, ২০১৩; জিবিসিএসআরডি সার্কুলার লেটার নং:০৫ তারিখ-সেন্টেম্বর ১১, ২০১৩) তাদেরকে পরিবেশবান্ধব অর্থায়নের নির্দেশনা প্রদান করা হয়।পরিবেশবান্ধব ব্যাংকিং নীতিমালা বাস্তবায়নের অভিজ্ঞতা হতে সুস্পষ্টভাবে প্রতীয়মান হয়েছে যে, পরিবেশবান্ধব অর্থায়নকে গ্রাহক ও ব্যাংক/আর্থিক প্রতিষ্ঠান সহ সকল স্টেকহোল্ডারের কাছে অধিকতর সহজবোধ্য করা এবং বাংলাদেশ সরকারের উন্নয়ন পরিকল্পনাসমূহ (Perspective Plan of Bangladesh: 2010-2021, National Sustainable Development Strategy 2010-21, সপ্তম পঞ্চবার্ষিক পরিকল্পনা) ও টেকসই উন্নয়ন অভীষ্ট (Sustainable Development Goals) বাস্তবায়নকে ত্বরান্থিত করার উদ্দেশ্যে পরিবেশবান্ধব পণ্য/উদ্যোগে বেসরকারী খাতের ঋণ প্রবাহকে সুগম করার লক্ষ্যে ব্যাংক ও আর্থিক প্রতিষ্ঠানের নিজস্ব উৎস হতে পরিবেশবান্ধব অর্থায়নের জন্য একটি অভিন্ন পণ্য/উদ্যোগ তালিকা প্রকাশ করা প্রয়োজন।

২। এ প্রেক্ষিতে, ইতোমধ্যে ব্যাংক ও আর্থিক প্রতিষ্ঠানের নিজস্ব উৎস হতে পরিবেশবান্ধব অর্থায়নের জন্য যোগ্য পণ্য/উদ্যোগসমূহকে একটি সম্পূর্ণ খাতওয়ারী তালিকা আকারে প্রকাশ করা হলোঃ

খাতের ধরণ	উপখাত	পণ্য/উদ্যোগের ধরণ	
১. নবায়নযোগ্য জ্বালনি	১. সৌর শক্তি	১. সোলার হোম সিস্টেম	
		২. সোলার মাইক্রো/মিনি গ্রিড	
		৩. সোলার ইরিগেশন পাম্পিং সিস্টেম	
		৪. সোলার পাম্প এর মাধ্যমে ভূ-উপরিস্থ পানি উত্তোলন করতঃ	
		পরিশোধনপূর্বক সরবরাহ প্লান্ট	
		৫. সৌর ফটোভোল্টাইক সংযোজন প্লান্ট	
		৬. সোলার ফটোভোল্টাইক পাওয়ার প্লান্ট	
		৭. সোলার কুকার এসেম্বলি প্লান্ট	
		৮. সোলার ওয়াটার হিটার এসেম্বলি প্লান্ট	
		৯. সোলার এয়ার হিটার এন্ড কুলিং সিস্টেম এসেম্বলি প্লান্ট	
		১০. সৌর শক্তি চালিত কোল্ড স্টোরেজ	
	২. বায়ো গ্যাস	১১. বিদ্যমান গবাদি/পোল্ট্রি খামারে বায়োগ্যাস প্লান্ট স্থাপন	
		১২. সমন্বিত গরুপালন ও বায়োগ্যাস প্লান্ট স্থাপন	
		১৩. স্লারি হতে জৈবসার প্রস্তুত প্লান্ট	
		১৪. মাঝারি আকারের বায়োগ্যাস প্লান্ট	
		১৫. বায়োমাস ভিত্তিক বৃহৎ আকারের বায়োগ্যাস প্লান্ট	
		১৬. পোল্রি ও ডেইরী ভিত্তিক বৃহৎ আকারের বায়োগ্যাস প্লান্ট	

	৩. বায়ু বিদ্যুৎ	১৭. বায়ু শক্তি চালিত বিদ্যুৎ উৎপাদন প্লান্ট
	৪. জল বিদ্যুৎ	১৮. জলবিদ্যুৎ প্লান্ট
২. জ্বালানি দক্ষ/সাশ্রয়ী প্রযুক্তি	ठ. जना । पर्गू <u>२</u>	১৯. জ্বালানি অদক্ষ সামগ্রীসমূহকে জ্বালানি দক্ষ সামগ্রী দ্বারা প্রতিস্থাপন
2. 41.111.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1		প্রকল্প
		২০. অটো সেন্সরযুক্ত পাওয়ার সুইচ এসেম্বলি প্লান্ট
		২১. জ্বালানি দক্ষ উন্নত কুক স্টোভ এসেম্বলি প্লান্ট
		২২. LED প্রযুক্তি সম্পন্ন বাল্প উৎপাদন প্লান্ট
		২৩. LED বাল্প/টিউব লাইট এসেম্বলি প্লান্ট
		২৪. সনাতন পদ্ধতির চুন চুল্লীগুলোকে উন্নত প্রযুক্তির চুল্লী দ্বারা প্রতিস্থাপন
		২৫. ওয়েস্ট হিট রিকভারী সিস্টেম
० विकल क्षांची		২৬. পাইরোলাইসিস প্রক্রিয়ায় দাহ্য তৈল উৎপাদন
৩. বিকল্প জ্বালানি	्राष्ट्रम	
৪. বর্জ্য ব্যবস্থাপনা	১. তরল বজ্য	২৭. বায়োলজ্যিক্যাল ETP (Effluent Treatment Plant) স্থাপন
	ব্যবস্থাপনা	২৮. বায়োলজিক্যাল ও কেমিক্যাল এর সমন্থিত প্রযুক্তিসম্পন্ন ETP স্থাপন
		২৯. কেমিক্যাল ETPকে বায়োলজিক্যাল ও ক্যামিক্যাল এর সমন্বিত
		প্রযুক্তিসম্পন্ন ETPতে রূপান্তরকরণ
		৩০. কেমিক্যাল ETP স্থাপন
		৩১. সেন্ট্রাল ইফ্লুয়েন্ট ট্রিটমেন্ট প্লান্ট
		৩২. বর্জ্য পানি প্রক্রিয়াজাতকরণ
		৩৩. পয়:নিষ্কাশিত তরল প্রক্রিয়াজাতকরণ প্রকল্প
	২. কঠিন বর্জ্য	৩৪. পৌর বর্জ্য হতে মিথেন রিক্ভারি ও বিদ্যুৎ উৎপাদন
	ব্যবস্থাপনা	৩৫. পৌর বর্জ্য হতে কম্পোস্ট উৎপাদন
		৩৬. ক্ষতিকারক বর্জ্য ব্যবস্থাপনা
		৩৭. গাঁদ ব্যবস্থাপনা ও প্রক্রিয়াজাতকরণ
৫. পুনঃপ্রক্রিয়াকরণ ও		৩৮. PET বোতল পুনঃপ্রক্রিয়াজাতকরণ প্লান্ট
পুনঃপ্রক্রিয়াকরণ উপযোগী		৩৯. প্লাস্টিক জাতীয় বর্জ্য (পিভিসি, পিপি, এলডিপিই, এইচডিপিই, পিএস)
দ্রব্য প্রস্তুতকরণ		প্রক্রিয়াকরণ প্লান্ট
		৪০. ব্যবহৃত কাগজ প্রক্রিয়াকরণ করতঃ কাগজ উৎপাদন প্লান্ট ও কাগজ
		থেকে প্রস্তুত্ত থালা, গ্লাস, মগ প্রভৃতি
		৪১. পুনঃপ্রক্রিয়াকরণ উপযোগী ব্যাগেজ প্রস্তুত (প্রাকৃতিক কাঁচামাল যেমন
		বাঁশ, হতে)
		৪২. পুনঃপ্রক্রিয়াকরণ উপযোগী নন-ওভেন পলিপ্রপাইলিন সুতা এবং
		ব্যাগেজ প্রস্তুত প্লান্ট
		৪৩. সৌর ব্যাটারী পুনঃপ্রক্রিয়াজাতকরণ প্লান্ট ৪৪. ব্যবহৃত লেড এসিড ব্যাটারি পুনঃপ্রক্রিয়াজাতরণ প্লান্ট
		,
৬. পরিবেশবান্ধব ইট		৪৫. কমপ্রেসড ব্লক ইট
উৎপাদন		৪৬. ফোম-কনক্রিট ইট
		৪৭. আধুনিক প্রযুক্তিসম্পন্ন ইট (Hybrid Hoffman Kiln, Vertical
		Shaft Brick Kiln, Zigzag Brick Kiln, Improved Zigzag Brick
		Kiln, Tunnel Kiln, Conversion of Fixed Chimney Kiln into
		anyone of the mentioned above)
৭. পরিবেশবান্ধব স্থাপনা		8b. USGBC-LEED, BREEAM, CASBEE, EDGE, GRIHA
		অথবা SREDA, Bangladesh কর্তৃক প্রনয়নকৃত বা স্বীকৃত গ্রিনবিল্ডিং
		রেটিং সিস্টেমের আওতায় নির্মিত বা নির্মিতব্য Green Industry বা
		Green Building
		৪৯. Green Featured Building- সংযুক্তি-১ এ বর্ণিত বৈশিষ্ট্যসম্বলিত
		ভবনকে Green Featured Building হিসেবে বিবেচনা করা হবে
		(যতদিন পর্যন্ত জাতীয় পর্যায়ে কোন স্বীকৃত গ্রিনবিল্ডিং রেটিং সিস্টেম প্রস্তত
		না করা হয়।) এছাড়া, বর্ণিত বৈশিষ্ট্যসমূহ স্বতন্ত্রভাবে ব্যাংক ও আর্থিক
		প্রতিষ্ঠানগুলোর পরিবেশবান্ধব অর্থায়নের জন্য উপযুক্ত পণ্য হিসেবে
		विद्विष्ठि श्रुत्व ।
		110112 - 7011

ওয়েবসাইট: www.bb.org.bd

৮. বিবিধ	৫০. ক্ষুদ্র, মাঝারী ও বৃহৎ কারখানার কর্মপরিবেশ ও নিরাপত্তা নিশ্চিত	করণ
	(অগ্নি প্রতিরক্ষা ব্যবস্থা, দুর্যোগ প্রতিরক্ষা ও প্রতিরোধ ব্যবস্থা, কর্মীদের স	শ্বাস্থ্য
	সুরক্ষা ব্যবস্থা)	
	৫১. বানিজ্যিকভাবে কেচোঁ কম্পোস্ট (VermiCompost) সার উৎপাদ	ন
	৫২. জ্বালানি সাশ্রয়ী/দক্ষ উপায়ে পাম অয়েল তেল উ ^e পাদন প্লান্ট।	

৩।পরিবেশবান্ধব খাতে ব্যাংক ও আর্থিক প্রতিষ্ঠানের অনুকূলে বাংলাদেশ ব্যাংক কর্তৃক প্রদন্ত/প্রদেয় পুনঃঅর্থায়নের জন্য পণ্য/উদ্যোগ তালিকা স্ব স্ব পুনঃঅর্থায়ন স্কীম/তহবিল/Fund (যথাঃ পরিবেশবান্ধব পণ্য/উদ্যোগের জন্য পুনঃঅর্থায়ন স্কিম, নবায়নযোগ্য জ্বালানী ও পরিবেশবান্ধব অর্থায়নযোগ্য খাতে পুনঃঅর্থায়ন স্কীম, Green Transformation Fund) এর নীতিমালা দ্বারা নির্ধারিত হবে।

8। প্রদত্ত তালিকার ৪৯ ক্রমে বর্ণিত Green Featured Building এর প্রতিটি বৈশিষ্ট্য (সংযুক্তি-১ এ বর্ণিত) স্বতন্ত্র বা সম্মিলিত-দুভাবেই পরিবেশবান্ধব অর্থায়নের জন্য যোগ্য পণ্য/উদ্যোগ হিসেবে বিবেচিত হবে।

৫। উল্লিখিত তালিকা ব্যতীত কোন পরিবেশবান্ধব পণ্য/উদ্যোগ, ঋণ/বিনিয়োগের জন্য কোন ব্যাংক/আর্থিক প্রতিষ্ঠান বিবেচনা করার পূর্বে বাংলাদেশ ব্যাংকের অনুমোদনের জন্য 'মহাব্যবস্থাপক, সাসটেইনেবল ফাইন্যান্স ডিপার্টমেন্ট, বাংলাদেশ ব্যাংক, প্রধান কার্যালয়' এর বরাবরে সংশ্লিষ্ট ব্যাংক/আর্থিক প্রতিষ্ঠানের ব্যবস্থাপনা পরিচালক/প্রধান নির্বাহী কর্মকর্তার স্বাক্ষরে পত্র মারফত আবেদন করবে। আবেদন পত্রের সাথে সংযুক্তি-২ এ বর্ণিত বিষয়গুলো (aspects) বিস্তারিত বিশ্লেষণপূর্বক প্রস্তাবিত পণ্য/উদ্যোগের আর্থিক লাভজনকতা, পরিবেশগত এবং সামাজিক সম্ভাব্যতা ও প্রাক ঝুঁকি মূল্যায়ন বিষয়ে প্রতিবেদন দাখিল করবে। বাংলাদেশ ব্যাংকের অনুমোদন প্রাপ্তি সাপেক্ষে প্রস্তাবিত পণ্য/উদ্যোগ পরিবেশবান্ধব অর্থায়নের জন্য উপযুক্ত পণ্য/প্রকল্প হিসেবে বিবেচিত হবে।

৬। ব্যাংক কোম্পানি আইন, ১৯৯১ (২০১৩ সালে সংশোধিত) এর ৪৫ ধারা ও আর্থিক প্রতিষ্ঠান আইন, ১৯৯৩ (২০০৩ সালে সংশোধিত) এর ১৮(ছ) ধারায় প্রদত্ত ক্ষমতাবলে এ সার্কুলার জারি করা হলো যা অবিলম্বে কার্যকর হবে।

আপনাদের বিশ্বস্ত.

(মনোজ কুমার বিশ্বাস) মহাব্যবস্থাপক

ফোন নং: ৯৫৩০৩২০ ফ্যাক্স নং: ৯৫৩০৩২৪

Email: manoj.biswas@bb.org.bd gm.gbcsrd@bb.org.bd

সংযুক্তি-১

Green Featured Building এর বৈশিষ্ট্যসমূহ (কারিগরী বিষয় বিধায় ইংরেজিতে তালিকা প্রদান করা হল)

Equipment Name	Specification					
Air Conditioning System	centrally air-c of prime impo is important to meet or exceed below.	onditioned bui ortance. The he o procure an ef ed the minimu	lding. H art of th ficient c um effic	lence the of e HVAC s hiller syste- ciency req	efficiency of system is the em. The coo uirement as	f a HVAC system is e chiller and hence it ling equipment shall stated in the table
	Description	Capacity	COP	IPLV	Input kW/TR	Test procedure
	Air cooled chillers including the condenser	All Capacities	2.8	3.05	1.25	ARI 550/590
	Air cooled chillers without the condenser	All Capacities	3.1	3.45	1.13	ARI 550/590
	Water cooled, electrical operated positive displaceme nt (Reciprocat ing)	All capacities	4.20	5.05	0.83	ARI 550/590
	Water cooled	<150 TR	4.45	5.2	0.79	ARI 550/590
	operated	≥150 TR and 300 TR	4.90	5.6	0.71	
	displaceme nt (rotary screw and scroll)	≥300 TR	5.5	6.15	0.64	
	Water	<150 TR	5.0	5.25	0.70	ARI 550/590
	electrically operated	≥150 TR and 300 TR	5.55	5.9	0.63	
	centifugal	≥300 TR	6.1	6.4	0.57	
	Name Air Conditioning	Name Air Conditioning System Air-conditioning centrally air-cof prime imposis important to meet or excess below. Table—M Description Air cooled chillers including the condenser Air cooled chillers without the condenser Water cooled, electrical operated positive displaceme nt (Reciprocating) Water cooled electrical operated positive displaceme nt (rotary screw and scroll) Water cooled electrically	Air Conditioning System Air-conditioning accounts for centrally air-conditioned but of prime importance. The he is important to procure an efficient meet or exceed the minimum below. Table—Minimum efficient meet or exceed the minimum below. Table—Minimum efficient meet or exceed the minimum below. Table—Minimum efficient meet or exceed the minimum below. Air cooled chillers condenser Air cooled chillers without the condenser Water cooled, electrical operated positive displaceme nt (Reciprocat ing) Water cooled electrical operated positive displaceme nt (rotary screw and scroll) Water cooled electrically operated centrifugal Water cooled electrically operated centrifugal	Air Conditioning System Air-conditioning accounts for more centrally air-conditioned building. Hof prime importance. The heart of the is important to procure an efficient of meet or exceed the minimum efficiency required. Table—Minimum efficiency required Capacities including the condenser Air cooled chillers including the condenser Air cooled chillers without the condenser Water cooled, electrical operated positive displaceme int (Reciprocat ing) Water cooled electrical operated positive displaceme int (Reciprocat ing) Water cooled electrical operated positive displaceme int (rotary screw and scroll) Water cooled electrically operated cooled electrically operated and 300 TR 5.5 Source of the water cooled electrically operated and 300 TR 5.55 and	Air Conditioning System Air-conditioning accounts for more than 50% centrally air-conditioned building. Hence the of prime importance. The heart of the HVAC is important to procure an efficient chiller syst meet or exceed the minimum efficiency requirements Description Capacity COP IPLV	Air conditioning accounts for more than 50% of the total centrally air-conditioned building. Hence the efficiency of of prime importance. The heart of the HVAC system is the is important to procure an efficient chiller system. The coomect or exceed the minimum efficiency requirement as below. Table—Minimum efficiency requirements for water check the condenser of the condenser of the minimum efficiency requirement as below. Table—Minimum efficiency requirements for water check the condenser of

Air cooled absorption single effect	All Capacities	0.60		ARI 560
Water cooled absorption single effect	All Capacities	0.70		ARI 560
Water cooled absorption double effect (indirect fired)	All Capacities	1.0	1.05	ARI 560
Water cooled absorption double effect (Direct fired)	All Capacities	1.0	1.0	ARI 560

Table– Minimum efficiencies requirements for air cooled air-conditioning equipment

air-conditioning equipment				
Equipment	Refrigerant output	Seasonal coefficient of performance (SCOP)	Testing procedure	
type	output	kW/kW	procedure	
	<19 kW	2.84 (COPc)	ARI 210/240	
	\geq 19 kW and	3.16 (COPc)	7110/210/210	
Air-cooled	< 40 kW			
air conditioner	≥ 40 kW and < 70 kW	3.04 (COPc)	ARI 340/360	
	≥ 70 kW	2.72 (COPc)		
	<19 kW	3.35 (COP)	ARI 210/240	
Evaporatin g water-	≥ 19 kW and < 40 kW	3.37 (COP)		
cooled air conditioner	\geq 40 kW and $<$ 70 kW	3.22 (COP) 3.02 (IPLV)	ARI 340/360	
S	≥ 70 kW	2.70 (COP)		
Air-cooled condenser units	≥ 40 kW	2.96 (COP) 3.28 (IPLV)		
Water- cooled or evaporatin g condenser units	≥ 40 kW	3.84 COP	ARI 365	

NOTES: - AC coefficient of performance: COP = Refrigerant output	ut / nower
input (kW/ kW);	it / power
- Condenser unit, including the compressor and condenser	coils;
- Minimum coefficients of performance listed in Table 2 a	
calculated at 100% of the refrigerant output. To calculate t	
coefficient of performance of AC units running for one ye	ar, ARI
340/360 uses the following formula:	
IPLV= 0.01A+0.42B+0.45C+0.12D Where:	
IPLV – The Integrated Part Load Value- coefficient of per	formance of
the AC unit operating for one year at various part loads.	Tormance or
A = COP - coefficient of performance of the AC unit (W/	W) at full
load;	,
B = COP - coefficient of performance of the AC unit (W/	W) at 75%
load;	
C = COP - coefficient of performance of the AC unit (W/V)	W) at 50%
load;	WD + 250/
D = COP - coefficient of performance of the AC unit (W/	W) at 25%
load; ARI – American Refrigerant Institute	
02 Lift / Escalator Escalator—the escalator must be fitted with controls & Sens	ors to reduce spee
or auto stop when no traffic is detected. Escalators shall be	
of the energy saving features as described below:	designed with or
1. Reduced speed control: The escalator shall change	e to a slower spee
when no activity has been detected for a period of a	
(3) minutes. Detection shall be by photocell ac	
sensor at the top and bottom landing areas.	
2. Use on demand: The escalator shall shut down w	hen no activity ha
been detected for a period of a maximum of fifteen	-
on demand escalators must be designed with energ	
technology. The escalator shall start automatically	=
activation shall be by photocells or sensor instal	-
bottom landing areas.	area are tare top war
3. Use of AC Variable-Voltage and Variable-Frequence	cv (VVVF) drives
B. Elevator (lift) - Elevator (lift) must be provided with co	- :
energy demand. To meet this requirement, the following	
incorporated in traction drive elevators:	6
1. Use of AC Variable-Voltage and Variable-Freque	ncy (VVVF) drive
on non-hydraulic elevators.	
2. The lift car uses energy-efficient lighting and disp	olay lighting i.e. a
average lamp efficacy, across all fittings in the	car, of >55 lam
lumens/ circuit watt and lighting switches off aft	
inactive for a period of a maximum of five (5) minu	
3. The lifts operate in a stand-by condition during of	
example, the power side of the lift controller a	
equipment such as lift car lighting, user displays,	-
switch off when the lift has been inactive for a pe	
of five (5) minutes.	
03 Solar power 3% of Energy of use for Lift and Escalator	
system	
04 Fresh air supply Mechanical ventilation and Blower in Basement Floors at	nd Fresh air suppl
& mechanical system in habitable floor	

	Vent	*Variable speed derive fan & motor unit				
05	Lighting	Limitation of Lighting Power		In to design the lighting		
	Lighting	system in the most efficient				
		the buildings. The following table sets the average LPD limits building type:				
		Space				
		Business	LPD (W/m ²)			
		Mercantile	13	1		
		Hotels	9	-		
		Hospitals/Health care	11	-		
		Residential	7	-		
		Schools	11	-		
			3			
		Covered parking	1.6	-		
		Open and outdoor parking				
		Industries	As per requirement for			
			the specific task			
0.6	C	0 0 1:	preferably LED lights			
06	Sensors	Occupancy Sensors, Day lig				
0.7		at least 10 no of sensors (sing		(E) (C)		
07	Automation	Building Management System				
		An EMS/BMS reduces ener				
		controlling energy-consuming				
		such as lighting and space conditioning, an EMS/BMS is versatile enough to provide energy savings in process operations in manufacturing facilities.				
		Control functions include everything from basic stop/start function complex, chiller optimization routines.				
00	Cailing Fans					
08	Ceiling Fans	Energy consumption \leq 65 watt (at least 5 fans)				
		Energy Efficient Ceiling fan: An energy efficient ceiling fan can save around				
		Energy Efficient Ceiling fan: An energy efficient ceiling fan can save a 35% energy with compared to regular ceiling fan.				
09	Rain water	Rain water collection and use system				
0)	Collection and	2000 L/ Day capacity tank ar		e system for over flow		
	Discharge	water.	ia Onacigiouna Discharge	e system for over now		
10	WTP	Water Treatment Plant including recycling and reuse system with energy				
10	,,,,,,	efficient pumping system (5KLD)minimum				
11	Hot Water	Solar Water Heater: Solar water heating systems use solar panels, called				
11	system	collectors, fitted to roof.	water heating systems t	use solar panels, carrea		
	System	(200 Liter/hour) minimum				
		(200 Elici/liour) illillilliulii				
12	Motor Usage	Variable Frequency Drive:				
12	Wilder Osage		Drives) are basically a	oreen energy savings		
		VFDs (Variable Frequency Drives) are basically a green energy savings product that matches the amount of work or load on a motor to the amount of				
		energy it needs to power that amount of work. This reduces excess energy				
		from being wasted.	at allowing of work. This	a readout choose chargy		
		Soft Starter:				
			d with motors to tempora	nrily reduce the load and		
		A soft starter is a device used with motors to temporarily reduce the load and torque during startup. It applies a gradually increasing voltage to the motors				
		resulting in smooth accelerat	ion of the motor and coup	led load.		

13	Water Fixture	Water efficient fittings include faucets, showerheads and flushes that use less water in order to perform the same function of cleaning as effectively as standard models. Water efficiency is an important aspect, especially as fresh water resources are increasingly getting depleted at a rate faster that they are replenished. Use of efficient plumbing fixtures, sensors, auto control valves, aerators, flow control and pressure-reducing devices can result in significant reduction in water consumption. The following low flow fixtures shall be used:				
		Type of fixtures	Quantity	Unit		
		Water closets	Dual Flush (6/4)	liters/flushing cycle (full/low)		
		Shower	9.5	liters/min at 500 kPa		
		Urinals	Auto Sensor			
		Hand wash taps 6 Auto Sensor/Push system liters/min at 400 kPa				
		Kitchen/pantry faucets	6	liters/min at 400 kPa		
14	Masonry Materials	Concrete Hollow Blocks / Interlocking Concrete Block/ lightweight Cellular Concrete/ Clay Brick of Auto Brick factory with efficient kiln. (at list 60% of total Masonry wall) • The Factory should have energy audit report from national/International Certifying agency				
15	Steel	Reinforcement steel from the energy efficient factories • The Factory should have energy audit report from national/International Certifying agency • >10% Recycle Materials content				
16	Ready mix concrete	 Natural Stone chips as course aggregate The Factory should have energy audit report from national/International Certifying agency Should have recycle content or fly ash. 				
17	Paint	Low Volatile Organic Compounds (VOC) paint (VOC level <10g/L) • The Factory should have energy audit report from national/International certifying agency				
18	Low- E-Glass	Solar Heat Gain Coefficient (SHGC) 0.4 (maximum) or Shading Coefficient (SC) 0.46 (maximum) Visible Light Transmittance (VLT) of the glazed element should not be lower than 35%. Double Glazing Window: Energy-efficient glazing keeps home or office cooler and quieter as well as reducing our energy bills. That might mean double or triple-glazing, secondary glazing, or just heavier curtains. Double-glazed windows have two sheets of glass with a gap in between, usually about 16mm, to create an insulating barrier.				
19	UPVC window frame	Window frame made of UPVC (all Curtain and Sliding windows of a building) • The Factory should have energy audit report from				
		national/Internation	onal Certifying age	ency		
20	Insulation	Roof top Insulation & heat reflective paint (Solar Radiation Index value >78) or Insulation blokes				

সংযুক্তি-২

পরিবেশবান্ধব পণ্য/উদ্যোগ ঋণ/বিনিয়োগের লক্ষ্যে বাংলাদেশ ব্যাংকের তালিকাভুক্তির জন্য বিবেচ্য বিষয়াবলী

- ক. আর্থিক লাভজনকতা (Financial Profitability)
 - 3. Activity/ Operating Efficiency
 - ₹. Liquidity
 - Solvency
 - 8. Profitability
 - &. Valuation
- খ. পরিবেশগত সম্ভাব্যতা (Environmental and Social Feasibility)
 - ۵. Resource Efficiency
 - ₹. Resource Recycling
 - o. Renewable Energy
 - 8. Energy Efficiency
 - &. Water Management and Conservation
 - **b.** Water Use Efficiency
 - 9. Waste Water and Effluent Treatment Management
 - b.
 Heat and temperature management
 - a. Air ventilation and circulation efficiency
 - So. Air emission and quality efficiency
 - كا. Waste (liquid and solid) Management
 - ১২. Land Contamination Prevention/Mitigation
 - ٥٠. Land Acquisition and Resettlement Management
 - \$8. Labor and Working Condition Management
 - እ৫. Community Health and Safety Management
 - ১৬. Indigenous People and Cultural Heritage
- গ. প্রাক ঝুঁকি মূল্যায়ন (Pre-Risk Assessment)
 - 3. Cash Flow Forecasting (Net Present Value, Internal Rate Return, Discounted Payback Period and others)
 - ₹. Collateral Requirement
 - SWOT Analysis
 - 8. Market (Domestic/Export-oriented) Analysis
 - &. Fiscal Aspects